Skip to main content
Customer publications

Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices

Zhang, Yiwei; Parnell, Andrew J.; Pontecchiani, Fabio; Cooper, Joshaniel F. K.; Thompson, Richard L.; Jones, Richard A. L.; King, Stephen M.; Lidzey, David G.; Bernardo, Gabriel

By March 12th, 2019No Comments

Scientific Reports, 2017, vol 7pp. 44269

DOI:10.1038/srep44269

Abstract

We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency.

Visit the full article

Back to the overview