Skip to main content
Customer publications

Surface functionalized atomic layer deposition of bismuth vanadate for single-phase scheelite

Lamm, B.; Sarkar, A.; Stefik, M.

By March 12th, 2019No Comments

Journal of Materials Chemistry A, 2017, vol 5, 13, pp. 6060-6069

DOI:10.1039/C6TA09485F

Abstract

Monoclinic bismuth vanadate is one of the most promising oxide photoanodes for solar – assisted water splitting. To date, the atomic layer deposition of bismuth vanadates has relied on the catalytic codeposition of BiPh3 with VTIP to produce vanadium-rich compounds that undergo spinodal decomposition to multiphase mixtures upon crystallization. A surface functionalization (SF) step of ROH/VTIP/H2O was developed to inhibit V2O5 deposition for adjustable Bi:V stoichiometry. Ethanol, 2-propanol, and methanol were each found to inhibit V2O5 deposition, in order of increasing effect. Applying this SF step with ternary Bi–V–O depositions (ROH/VTIP/H2O/BiPh3/H2O) enabled composition tuning. The use of methanol enabled 45.9:54.1 Bi:V atomic ratio as-deposited, and was crystallizable to phase-pure scheelite, depending on the thickness. The resulting films were applied towards photo-assisted water splitting with a hole-scavenging sulfite where films up to 60 nm thick were free from apparent charge transport limitations. The optoelectronic properties were markedly improved by a novel photoelectrochemical activation step.

Visit the full article

Back to the overview