Skip to main content
Customer publications

Sulfophenylated Terphenylene Copolymer Membranes and Ionomers

Skalski, Thomas J. G.; Adamski, Michael; Britton, Benjamin; Schibli, Eric M.; Peckham, Timothy J.; Weissbach, Thomas; Moshisuki, Takashi; Lyonnard, Sandrine; Frisken, Barbara J.; Holdcroft, Steven

By March 12th, 2019No Comments

ChemSusChem, 2018, vol 11, 23, pp. 4033-4043

DOI:10.1002/cssc.201801965

Abstract

The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small-angle X-ray scattering and small-angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon-based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air.

Visit the full article

Back to the overview