ACS Applied Materials & Interfaces, 2016, vol 8, 12, pp. 8295-8304
DOI:10.1021/acsami.6b00765
Abstract
Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40–60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.