Skip to main content
Customer publications

Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates

Wang, Meimei; Xia, Yonggao; Wang, Xiaoyan; Xiao, Ying; Liu, Rui; Wu, Qiang; Qiu, Bao; Metwalli, Ezzeldin; Xia, Senlin; Yao, Yuan; Chen, Guoxin; Liu, Yan; Liu, Zhaoping; Meng, Jian-Qiang; Yang, Zhaohui; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Pan, Jing; Cheng, Ya-Jun

By March 12th, 2019No Comments

ACS Applied Materials & Interfaces, 2016, vol 8, 22, pp. 13982-13992

DOI:10.1021/acsami.6b05032

Abstract

A new facile scalable method has been developed to synthesize silicon oxycarbide (SiOC)/carbon nanohybrids using difunctional dental methacrylate monomers as solvent and carbon source and the silane coupling agent as the precursor for SiOC. The content (from 100% to 40% by mass) and structure (ratio of disordered carbon over ordered carbon) of the free carbon matrix have been systematically tuned by varying the mass ratio of methacryloxypropyltrimethoxysilane (MPTMS) over the total mass of the resin monomers from 0.0 to 6.0. Compared to the bare carbon anode, the introduction of MPTMS significantly improves the electrochemical performance as a lithium-ion battery anode. The initial and cycled discharge/charge capacities of the SiOC/C nanohybrid anodes reach maximum with the MPTMS ratio of 0.50, which displays very good rate performance as well. Detailed structures and electrochemical performance as lithium-ion battery anodes have been systematically investigated. The structure–property correlation and corresponding mechanism have been discussed.

Visit the full article

Back to the overview