Skip to main content
Customer publications

QCM detection of molecule–nanoparticle interactions for ligand shells of varying morphology

Marsh, Zachary M.; Lantz, Kayla A.; Stefik, Morgan

By March 12th, 2019No Comments

Nanoscale, 2018, vol 10, 40, pp. 19107-19116

DOI:10.1039/C8NR05605F

Abstract

Nanoparticles (NP) have widespread applications from sensing to drug delivery where much behavior is determined by the nature of the surface and the resulting intermolecular interactions with the local environment. Ligand mixtures enable continuously tunable behavior where both the composition and morphology influence molecular interactions. Mixed ligand shells form multiple morphologies ranging from Janus to patchy and stripe-like with varying domain dimensions. Solvent–NP interactions are generally measured by solubility measures alone. Here we develop a quartz crystal microbalance (QCM) approach to more broadly quantify molecule–NP interactions via vapor phase uptake into solid NP-films independent from solvation constraints. The composition and morphology of mixed ligand shells were found to exhibit pronounced non-monotonic behavior that deviated from continuum thermodynamics, highlighting the influence of ligand morphology upon absorption/adsorption. Alkyl and perfluorinated thiols were used as a model case with constant core-size distribution. The ligand morphology was determined by 19F NMR. Molecule uptake into NPs was measured with five benzene derivatives with varied degree of fluorination. For the cases examined, QCM measurements revealed enhanced uptake for patchy morphologies and suppressed uptake for stripe-like morphologies. These results contrast with insights from solubility measures alone where QCM sometimes identified significant molecular uptake of poor solvents. This QCM method thus provides new insights to molecule–NP interactions independent of the solvation shell.

Visit the full article

Back to the overview