Macromolecules, 2018, vol 51, 15, pp. 6037-6046
DOI:10.1021/acs.macromol.8b01313
Abstract
The formation of form I nuclei of polybutene-1 (PB-1) and its copolymer with polyethylene (PB1-ran-PE) has been studied by means of modified self-nucleation protocols. Even when the self-nucleation temperature was high enough and all form II crystals melt, recrystallization can be accelerated if the melt-crystallized sample was annealed at low temperatures (below 60 °C for PB-1 and 75 °C for PB1-ran-PE) for just 3 min. These results suggest the formation of latent form I nuclei within form II crystals. This hypothesis is consistent with the observed growth of a small amount of form I crystals during heating, after previous annealing at temperature lower than 20 °C. In addition, a peculiar phenomenon was found in PB1-ran-PE, as both form II and form I′ can be induced by the presence of latent form I nuclei, due to cross-nucleation and self-nucleation effects, respectively. The final ratio of the two kinds of crystal forms is a result of the competition between the two nucleation rates, which strongly depend on crystallization temperature. In this work, we have shown that careful design of novel self-nucleation protocols can yield evidence of the early stages of form II to form I transition, even when the degree of transformed crystals is below the limit of detection of conventional techniques sensitive to crystalline order (DSC, WAXD, and FTIR).