Skip to main content
(Natural) polymersApplicationCharacterizationCustomer publicationsMaterialOtherPhase analysisPolymer researchTechniqueWAXS

Facile treatment to fine-tune cellulose crystals in cellulose-silk biocomposites through hydrogen peroxide

Love, Stacy A.; Popov, Elizabeth; Rybacki, Karleena; Hu, Xiao; Salas-de la Cruz, David

By March 12th, 2021No Comments

International Journal of Biological Macromolecules, 2020, vol 147pp. 569-575

DOI:10.1016/j.ijbiomac.2020.01.100

Abstract

The modulation of structural fibrous protein and polysaccharide biopolymers for the design of biomaterials is still relatively challenging due to the non-trivial nature of the transformation from a biopolymer’s native state to a more usable form. To gain insight into the nature of the molecular interaction between silk and cellulose chains, we characterized the structural, thermal and morphological properties of silk-cellulose biocomposites regenerated from the ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc), as a function of increasing coagulation agent concentrations. We found that the cellulose crystallinity and crystal size are dependent on the coagulation agent, hydrogen peroxide solution. The interpretation of our results suggests that the selection of a proper coagulator is a critical step for controlling the physicochemical properties of protein-polysaccharide biocomposite materials.

Visit the full article

Back to the overview