Wang, Hongjian; Chen, Long; Yang, Hao; Wang, Meidi; Yang, Leixin; Du, Haiyan; Cao, Chenliang; Ren, Yanxiong; Wu, Yingzhen; Pan, Fusheng; Jiang, Zhongyi
Brønsted acid mediated covalent organic framework membranes for efficient molecular separation
Covalent organic frameworks (COFs) hold great promise in molecular separation. However, since the aperture size of most COFs is in the range of 0.84.9 nm, constructing COF membranes with a smaller aperture size is thus in urgent demand yet remains a grand challenge. In this study, a Brønsted acid mediated…
Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells
Yang, Chenyi; Zhang, Jianqi; Liang, Ningning; Yao, Huifeng; Wei, Zhixiang; He, Chang; Yuan, Xiaotao; Hou, Jianhui
Minimizing the energy-level offset between a donor and acceptor in order to reduce energy loss (Eloss) is a hot topic in the field of organic solar cells (OSCs). However, for non-fullerene OSCs, the discussion concerning the relationship between energy-level offset and device performance has not yet reached a general conclusion…
Nano-confined crystallization of organic ultrathin nanostructure arrays with programmable geometries
Gao, Hanfei; Qiu, Yuchen; Feng, Jiangang; Li, Shuang; Wang, Huijie; Zhao, Yuyan; Wei, Xiao; Jiang, Xiangyu; Su, Yewang; Wu, Yuchen; Jiang, Lei
Fabricating ultrathin organic semiconductor nanostructures attracts wide attention towards integrated electronic and optoelectronic applications. However, the fabrication of ultrathin organic nanostructures with precise alignment, tunable morphology and high crystallinity for device integration remains challenging. Herein, an assembly technique for fabricating ultrathin organic single-crystal
Random Organic Nanolaser Arrays for Cryptographic Primitives
Feng, Jiangang; Wen, Wen; Wei, Xiao; Jiang, Xiangyu; Cao, Moyuan; Wang, Xuedong; Zhang, Xiqi; Jiang, Lei; Wu, Yuchen
Next-generation high-security cryptography and communication call for nondeterministic generation and efficient authentication of unclonable bit sequences. Physical unclonable functions using inherent randomness in material and device fabrication process have emerged as promising candidates for realizing one-way cryptographic systems that avoid duplication and attacks. However, previous
Synthesis and Solid-State Properties of PolyC3 (Co)polymers Containing (CH2CH2C(COOR)2) Repeat Units with Densely Packed Fluorocarbon Lateral Chains
Illy, Nicolas; Urayeneza, Deogratias; Maryasevskaya, Alina V.; Michely, Laurent; Boileau, Sylvie; Brissault, Blandine; Bersenev, Egor A.; Anokhin, Denis V.; Ivanov, Dimitri A.; Penelle, Jacques
The synthesis and structural characterization of linear PolyC3 polymers containing trimethylene-1,1-dicarboxylate structural repeat units with C6F13 and C8F17 fluorinated side chains is described for the first time, and their properties were compared with the traditional polyvinyl structures that display the fluorinated chain on every second rather than on every third…
Physical Chemical Properties of Shea/Cocoa Butter Blends and their Potential for Chocolate Manufacture
Rodriguez-Negrette, Ana Carolina; Huck-Iriart, Cristián; Herrera, María Lidia
Cocoa butter (CB) is the preferred fat for chocolates and confections. However, for technological and economic reasons, there have been strong efforts for partially replacing it. As shea butter (SB) has become an important natural source of symmetrical stearic-rich triacylglycerols (TAG), the aim of this work was to study physical…
Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions
He, Lintao; Gu, Hao; Liu, Xiaolong; Li, Pengwei; Dang, Yangyang; Liang, Chao; Ono, Luis K.; Qi, Yabing; Tao, Xutang
Tin-based perovskite solar cells (PSCs), with more consummate optical band gaps, lower exciton-binding energies, and higher charge-carrier mobility, have not attracted tremendous research efforts compared with the lead-based ones that have a record power conversion efficiency (PCE) of 24.2%. The major challenges for Sn-based research are significantly low open-circuit voltage,…
Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules
Adil, Muhammad Abdullah; Zhang, Jianqi; Wang, Yuheng; Yu, Jinde; Yang, Chen; Lu, Guanghao; Wei, Zhixiang
An optimized bulk heterojunction (BHJ) interface, certifying enhanced exciton-splitting, charge separation and recombination inhibition, is vastly desired to obtain high power conversion efficiencies (PCEs). Herein, the ternary strategy has been employed to effectively modify the phase separation between the J71:ITIC blend by incorporating a 3D aggregation-induced emission (AIE) material,
Polyfluorene Copolymers as High-Performance Hole-Transport Materials for Inverted Perovskite Solar Cells
Hu, Jinlong; You, Jiang; Peng, Chang; Qiu, Shudi; He, Wenxin; Li, Chaohui; Liu, Xianhu; Mai, Yaohua; Guo, Fei
Inverted perovskite solar cells (PSCs) that can be entirely processed at low temperatures have attracted growing attention due to their cost-effective production. Hole-transport materials (HTMs) play an essential role in achieving efficient inverted PSCs, as they determine the effectiveness of charge extraction and recombination at interfaces. Herein, three polyfluorene copolymers…
How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates
Safari, Maryam; Maiz, Jon; Shi, Guangyu; Juanes, Diana; Liu, Guoming; Wang, Dujin; Mijangos, Carmen; Alegría, Ángel; Müller, Alejandro J.
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by…