Yu, Duk Man; Smith, Darren M.; Kim, Hyeyoung; Mapas, Jose Kenneth D.; Rzayev, Javid; Russell, Thomas P.
Morphological Evolution of Poly(solketal methacrylate)-block-polystyrene Copolymers in Thin Films
The morphological evolution of the lamellar microdomains in the thin films of symmetric poly(solketal methacrylate-b-styrene) (PSM-b-PS) copolymers that can be converted into poly(glycerol monomethacrylate-b-styrene) (PGM-b-PS) copolymers through acid hydrolysis reaction was investigated. This simple chemical transformation was performed in the solid state using trifluoroacetic acid vapor,
Photocatalytic Template Removal by Non-Ozone-Generating UV Irradiation for the Fabrication of Well-Defined Mesoporous Inorganic Coatings
Reid, Barry; Taylor, Alaric; Alvarez-Fernandez, Alberto; Ismael, Muhamad Hafiz; Sharma, Shatakshi; Schmidt-Hansberg, Benjamin; Guldin, Stefan
The processing of mesoporous inorganic coatings typically requires a high-temperature calcination step to remove organic precursors that are essential during the material assembly. Lowering the fabrication energy costs and cutting back on the necessary resources would provide a greater scope for the deployment in applications such as architectural glass, optical…
Adjustable self-assembly in polystyrene-block-poly(4-vinylpyridine) dip-coated thin films
Konefa?, Magdalena; Zhigunov, Alexander; Pavlova, Ewa; ?ernoch, Peter; Pop-Georgievski, Ognen; pírková, Milena
This work studies the influence of dip-coating parameters on self-assembly in ultra-thin films of asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers from a 1-chloropentane solution using a combination of several experimental techniques. Small-Angle X-ray Scattering, Atomic Force Microscopy, Grazing Incidence Small Angle X-ray Scattering and Transmission Electron Microscopy
Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells
Hu, Hanlin; Deng, Wanyuan; Qin, Minchao; Yin, Hang; Lau, Tsz-Ki; Fong, Patrick W. K.; Ren, Zhiwei; Liang, Qiong; Cui, Li; Wu, Hongbin; Lu, Xinhui; Zhang, Weimin; McCulloch, Iain; Li, Gang
Single junction organic photovoltaic devices (OPVs) have exceeded 15% power conversion efficiency (PCE) with the help of fused ring based low-bandgap non-fullerene acceptors (NFAs). As a major type of NFA, the indacenodithiophene derivative NFA (IDTBR) has been shown to have superior OPV stability with outstanding VOC, but the efficiency is…
Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core
Yuan, Jun; Zhang, Yunqiang; Zhou, Liuyang; Zhang, Guichuan; Yip, Hin-Lap; Lau, Tsz-Ki; Lu, Xinhui; Zhu, Can; Peng, Hongjian; Johnson, Paul A.; Leclerc, Mario; Cao, Yong; Ulanski, Jacek; Li, Yongfang; Zou, Yingping
Summary Recently, non-fullerene n-type organic semiconductors have attracted significant attention as acceptors in organic photovoltaics (OPVs) due to their great potential to realize high-power conversion efficiencies. The rational design of the central fused ring unit of these acceptor molecules is crucial to maximize device performance. Here, we report a new…
Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar cells
Bian, Gao-Feng; Zhao, Feng; Lau, Tsz-Ki; Sheng, Chun-Qi; Lu, Xinhui; Du, Hui; Zhang, Cheng; Qu, Zhi-Rong; Chen, Hongzheng; Wan, Jun-Hua
This work focuses on developing high-efficiency perylene diimide (PDI)-based small molecular nonfullerene acceptors with a simple synthetic strategy. We reported a new electron acceptor, Py-e-PDI, obtained via cross-coupling four PDI units with a planar pyrene core through ethynyl groups. Although the ring-fusion synthetic procedure was omitted, the large planar core…
A printed, recyclable, ultra-strong, and ultra-tough graphite structural material
Zhou, Yubing; Chen, Chaoji; Zhu, Shuze; Sui, Chao; Wang, Chao; Kuang, Yudi; Ray, Upamanyu; Liu, Dapeng; Brozena, Alexandra; Leiste, Ulrich H.; Quispe, Nelson; Guo, Hua; Vellore, Azhar; Bruck, Hugh A.; Martini, Ashlie; Foster, Bob; Lou, Jun; Li, Teng; Hu, Liangbing
The high mechanical performance of common structural materials (e.g., metals, alloys, and ceramics) originates from strong primary bonds (i.e., metallic, covalent, ionic) between constituent atoms. However, the large formation energy of primary bonds requires high temperatures in order to process these materials, resulting in significant manufacturing costs and a substantial…
Transforming an inert nanopolymer into broad-spectrum bactericidal by superstructure tuning
Scilletta, Natalia A.; Pezzoni, Magdalena; Desimone, Martín F.; Soler-Illia, Galo J.A.A.; Catalano, Paolo N.; Bellino, Martín G.
Poloxamer block copolymers (also known as Pluronic®) are particularly useful for drug delivery and self-assembly techniques. These nanopolymers are generally considered to be biologically inert and they were used to generate only bacteria repellent surfaces but keeps bacteria alive and as a latent threat. However, the inherent capabilities of these…
Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells
Qin, Ran; Yang, Weitao; Li, Shuixing; Lau, Tsz-Ki; Yu, Zhipeng; Liu, Zhang; Shi, Minmin; Lu, Xinhui; Li, Chang-Zhi; Chen, Hongzheng
It is promising, yet challenging, to employ molecules of slight synthetic complexity to construct efficient and low-cost organic solar cells (OSCs). Herein, two unfused acceptors, DF-TCIC and HF-TCIC, were developed for OSC applications, in which the 3,4-difluorothiophene core connected through a cyclopentadithiophene (CPDT) bridge to 1,1-dicyanomethylene-3-indanone derivatives (IC for DF-TCIC…
Cavitation-enabled rapid and tunable evolution of high-χN micelles as templates for ordered mesoporous oxides
Lokupitiya, Hasala N.; Stefik, Morgan
The kinetic-entrapment of block copolymer micelles enables size-persistence, however tuning micelle sizes under such conditions remains challenging. Agitation-induced chain exchange via vortexing is limited by the production of solution–air interfaces. Here, we use ultrasonic cavitation for rapid interface production that accelerates micelle growth by an order of magnitude over…