Skip to main content
Customer publications

Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk

Anton, Arthur Markus; Heidebrecht, Aniela; Mahmood, Nasir; Beiner, Mario; Scheibel, Thomas; Kremer, Friedrich

By March 12th, 2019No Comments

Biomacromolecules, 2017, vol 18, 12, pp. 3954-3962

DOI:10.1021/acs.biomac.7b00990

Abstract

Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness’s molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.

Visit the full article

Back to the overview